Catalases Are NAD(P)H-Dependent Tellurite Reductases
نویسندگان
چکیده
Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3)(2-)) to the less toxic, insoluble metal, tellurium (Te(o)), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.
منابع مشابه
Flavoprotein-Mediated Tellurite Reduction: Structural Basis and Applications to the Synthesis of Tellurium-Containing Nanostructures
The tellurium oxyanion tellurite (TeO3 (2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron trans...
متن کاملTellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite.
Tellurite and selenate reductase activities were identified in extracts of Escherichia coli. These activities were detected on non-denaturing polyacrylamide gels using an in situ methyl viologen activity-staining technique. The activity bands produced from membrane-protein extracts had the same RF values as those of nitrate reductases (NRs) A and Z. Tellurite and selenate reductase activities w...
متن کاملBinding energy and specificity in the catalytic mechanism of yeast aldose reductases.
Derivatives of d-xylose and d-glucose, in which the hydroxy groups at C-5, and C-5 and C-6 were replaced by fluorine, hydrogen and azide, were synthesized and used as substrates of the NAD(P)H-dependent aldehyde reduction catalysed by aldose reductases isolated from the yeasts Candida tenuis, C. intermedia and Cryptococcus flavus. Steady-state kinetic analysis showed that, in comparison with th...
متن کاملCloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases.
The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the termina...
متن کاملNaphthoquinone-dependent generation of superoxide radicals by quinone reductase isolated from the plasma membrane of soybean.
Using a tetrazolium-based assay, a NAD(P)H oxidoreductase was purified from plasma membranes prepared from soybean (Glycine max) hypocotyls. The enzyme, a tetramer of 85 kD, produces O2(.-) by a reaction that depended on menadione or several other 1,4-naphthoquinones, in apparent agreement with a classification as a one-electron-transferring flavoenzyme producing semiquinone radicals. However, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 1 شماره
صفحات -
تاریخ انتشار 2006